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Digital Baseband Transmission

ISI : InterSymbol Interference

Channel Noise

Detecting a pulse transmitted over a 
channel that is corrupted by additive noise.

The result of data transmission over a non-ideal 
channel is that each received pulse is affected 
by adjacent pulses.

Major sources of errors in the detection of 
transmitted digital data:
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Matched Filter

Linear Receiver Model

• Filter Requirements, h(t) :
• Make the instantaneous power in the output signal g0(t) , 
measured at time t=T, as large as possible compared with 
the average power of the output noise, n(t).
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• g(t) : transmitted pulse signal, binary symbol ‘1’ or ‘0’.
• w(t) : channel noise, sample function of a white noise process 
of zero mean and power spectral density N0/2.
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Maximize Signal-to-Noise Ratio

Linear Receiver Model
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Specify the impulse response h(t) of the filter such that 
the output signal-to-noise ratio is maximized.
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Objective :
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Math Review

Fourier Transform

Inverse Fourier Transform

Power Spectral Density of a Random Process SX(f)

applied to a Linear System H(f)
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Compute Signal-to-Noise Ratio
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For a given G(f) , find H(f)

in order to maximize SNR.

Optimization Problem:

Signal Power

Noise Power

Signal-to-Noise Ratio
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Schwarz’s Inequality

• If we have 2 complex functions φφφφ1(x) and φφφφ2(x) in the real 
variable x, satisfying the conditions:
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Matched Filter
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G*(f)=G(-f)

• The impulse response of the optimum filter, except for the 
scaling factor k, is a time-reversed and delayed version of the 
input signal g(t)
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Properties of Matched Filters
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• Taking the inverse Fourier transform at t=T:
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Matched Filter for Rectangular Pulse
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h(t) for a rectangular Pulse:

Filter Output g(t)*h(t):

Implementation:
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Error Rate due to Noise

In the interval                   , the received signal:bTt ≤≤0





+−

++
=

sent    was'0'  symbol,)(

sent    was'1'  symbol,)(
)(

twA

twA
tx

Tb is the bit duration,  A is the transmitted pulse amplitude

• The receiver has prior knowledge of the pulse shape but not 
its polarity. 

• There are two possible kinds of error to be considered:
(1) Symbol ‘1’ is chosen when a ‘0’ was transmitted.
(2) Symbol ‘0’ is chosen when a ‘1’ was transmitted.

x(t)
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Error Rate due to Noise

Suppose that symbol ‘0’ was sent: bTttwAtx ≤≤+−= 0,)()(
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Where RW(t,u) is the autocorrelation function of the white noise w(t) . 
Since w(t) is white with a PSD of N0/2 :
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PDF: Probability Density Function

Normalized PDF 
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• Gaussian Distribution:

• Symbol ‘0’ was sent:
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BER in a PCM receiver
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• where Eb =A2Tb , is the transmitted signal energy per bit.
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BER in a PCM receiver
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CIRF
Circuit Intégré Radio Fréquence

Lecture I

•Introduction
•Baseband Pulse Transmission
•Digital Bandpass Transmission
•Circuit Non-idealities Effect

Hassan Aboushady
Université Paris VI

• In wired systems, coaxial lines exhibit superior shielding 

at higher frequencies

• In wireless systems, the antenna size should be a 

significant fraction of the wavelength to achieve a 

reasonable gain.

• Communication must occur in a certain part of the 

spectrum because of FCC regulations.

• Modulation allows simpler detection at the receive end in 

the presence of non-idealities in the communication 

channel.

Why Modulation?
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• mi : one symbol every T seconds

• Symbols belong to an alphabet of M symbols: m1, m2, …, mM

M
mPp
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• Message output probability:

• Example: Quaternary PCM, 4 symbols: 00, 01, 10, 11
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Message Source
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Transmitter

• Signal Transmission Encoder: produces a vector si made up of N

real elements, where N     M .
• Modulator: constructs a distinct signal si(t) representing mi of 
duration T .

≤

• si(t) is real valued and transmitted every T seconds. 
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Examples of Transmitted signals: si(t)
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• The modulator performs a step change in the amplitude, phase 
or frequency of the sinusoidal carrier 

• ASK:                  
Amplitude Shift Keying 

• PSK:                         
Phase Shift Keying 

• FSK:                         
Frequency Shift Keying 

Special case: Symbol Duration T = Bit Duration, Tb
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• Received signal x(t) : 
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Communication Channel

• Two Assumptions:
•The channel is linear (no distortion).
• si(t) is perturbed by an Additive, zero-mean, stationnary, 
White, Gaussian Noise process (AWGN). 
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Receiver

m̂

•TASK: observe received signal, x(t), for a duration T and make a 
best estimate of transmitted symbol, mi .
•Detector: produces observation vector x . 
•Signal Transmission Decoder: estimates     using x, the 
modulation format and P(mi) .

• The requirement is to design a receiver so as to minimize 
the average probability of symbol error:
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Coherent  and Non-Coherent Detection

• Coherent Detection: 
- The receiver is time synchronized with the transmitter.
- The receiver knows the instants of time when the 
modulator changes state.
- The receiver is phase-locked to the transmitter.

• Non-Coherent Detection:
- No phase synchronism between transmitter and receiver.
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Gram-Schmidt Orthogonalization Procedure
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• we represent the given set of real-
valued energy signals s1(t), s2(t), … , 

sM(t), each of duration T: 

• where the coefficients of the 
expansion are defined by:

• the real-valued basis functions φφφφ1(t), 

φφφφ2(t), … , φφφφN(t) are orthonormal:

Modulator

Detector
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Coherent Detection of Signals in Noise

• w(t) is a sample function of 
an AWGN with power spectral 
density N0 /2.
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• Observation vector x :

• Signal Vector si :

where w is the noise vector.
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Coherent Binary PSK:
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• M=2, N=1

• One basis function:

• Signal constellation consists of 
two message points:
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Generation and Detection of Coherent Binary PSK

• Assuming white Gaussian Noise with       
PSD = N0/2 ,

The Bit Error Rate for coherent binary 
PSK is:
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Binary PSK Transmitter

Coherent Binary PSK Receiver
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Coherent QPSK:

• M=4, N=2:

• Two basis function:
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Constellation Diagram of Coherent QPSK System
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QPSK waveform: 01101000
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Generation and Detection of Coherent QPSK Signals

QPSK Transmitter

Coherent QPSK Receiver
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Power Spectra of BPSK ,QPSK and M-ary PSK

QPSK

BPSK

8-PSK

• Symbol Duration: MTT
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• Power Spectral Density of 
an M-ary PSK signal:
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